Cesium
Template:Infobox - chemický prvek
Cesium (chemická značka Cs, Template:Vjazyce Caesium) je chemický prvek z řady alkalických kovů, vyznačuje se velkou reaktivitou a mimořádně nízkým redoxním potenciálem.
Základní fyzikálně-chemické vlastnosti
editvlevo|náhled|Velmi čísté cesium v argonovém obalu Cesium je měkký, lehký, stříbrnozlatý kov, který lze krájet nožem. Jde o nejměkčí prvek periodické soustavy, který má zároveň druhý nejnižší bod tání i varu ze všech kovů (po rtuti). Na rozdíl od lithia, sodíku a draslíku má spolu s rubidiem vyšší hustotu než voda. Velmi dobře vede elektrický proud a teplo. V jeho parách se kromě jednoatomových částic vyskytují i dvouatomové molekuly. Páry mají modrozelenou až zelenošedou barvu. V kapalném amoniaku se rozpouští na temně modrý roztok. Elementární kovové cesium lze dlouhodobě uchovávat pod vrstvou alifatických uhlovodíků jako petrolej nebo nafta, s kterými nereaguje.
Cesium mimořádně rychle až explozivně reaguje s kyslíkem na superoxid cesný a s vodou na hydroxid cesný, a v přírodě se s ním proto lze setkat pouze ve formě sloučenin. Cesium se v přírodě vyskytuje pouze v jednom oxidačním stupni a to CsI. Reakce cesia s vodou je natolik exotermní, že unikající vodík reakčním teplem samovolně explozivně vzplane. Cesium se také za mírného zahřátí slučuje s vodíkem na hydrid cesný CsH, s dusíkem na nitrid cesný Cs3N nebo azid cesný CsN3. Nepřímo se také slučuje s uhlíkem. Soli cesia barví plamen modře až fialově.
Historický vývoj
editCesium bylo objeveno roku 1860 německým chemikem Robertem Wilhelmem Bunsenem a německým fyzikem Gustavem R. Kirchhoffem za použití jimi objevené spektrální analýzy, kteří cesium našli v dürkheimských minerálních vodách spolu s rubidiem. Cesium bylo pojmenováno podle svých dvou modrých čar ve spektru jako modrošedý – latinsky caesius. Čisté cesium se Robertu Bunsenovi nepodařilo připravit, připravil pouze cesný amalgám. Kovové cesium poprvé získal Carl Setterberg v roce 1882 elektrolýzou směsi kyanidu cesného a kyanidu barnatého.
Výskyt v přírodě
editvlevo|náhled|Minerál cesia – polucit Díky jeho velké reaktivitě se v přírodě vyskytují pouze sloučeniny cesia a to pouze v mocenství Cs+.
Cesium se vyskytuje pouze vzácně jak na Zemi tak i ve vesmíru. Předpokládá se, že zemská kůra obsahuje 1–7 mg Cs/kg, což odpovídá 2,6 ppm (parts per milion = počet částic na 1 milion částic) a ve výskytu se řadí na stejnou úroveň jako brom, hafnium a uran. Průměrný obsah v mořské vodě je přibližně 0,5 μg/l. Ve vesmíru se předpokládá výskyt 1 atomu cesia na přibližně 100 miliard atomů vodíku.
V minerálech provází cesium obvykle ostatní alkalické kovy. Minerál s největším výskytem cesia se nazývá polucit CsSi2AlO6 nebo i (Cs,Na)2Al2Si4O12.2H2O a nachází se v drúzách ostrova Elby. Větší výskyt je uváděn v minerálu lepidolitu, což je poměrně značně komplikovaný hlinito-křemičitan lithno-draselný KLi2[AlSi3O6] (OH, F)2. V tomto minerálu se obsah cesia pohybuje kolem hodnoty 1 %. V malých množstvích (asi okolo 0,015 %) se vyskytuje v karnalitu KCl.MgCl2.6 H2O.
Výroba
editvpravo|náhled|Přídání trošky cesia do studené vody způsobí explozi. Elementární cesium se průmyslově vyrábí elektrolýzou roztavené směsi 60 % chloridu vápenatého a 40 % chloridu cesného při teplotě 750 °C. Vápník vzniklý elektrolýzou ve sběrné nádobě tuhne, protože jeho teplota tání je vyšší než cesia a tím se od cesia odděluje. Elektrolýza probíhá na železné katodě a grafitové anodě, na které vzniká plynný chlor. Tento způsob pro tento kov však není úplně nejlepší. V současné době se vyrábí okolo pěti tun cesia ročně.
- Železná katoda 2 Cs+ + 2 e- → 2 Cs
- Grafitová anoda 2 Cl- → Cl2 + 2 e-
Lepší je příprava chemickou cestou, zahříváním hydroxidu cesného nebo oxidu cesného s kovovým hořčíkem v proudu vodíku nebo s kovovým vápníkem ve vakuu. Nejlepší redukovadlo reakce je zirkonium.
Malé množství cesia lze připravit zahříváním chloridu cesného s azidem barnatým za vysokého tlaku. Baryum vzniklé rozkladem azidu vytěsňuje z chloridu cesného cesium, které v podobě svých par kondenzuje na chladnějších stěnách nádoby.
Využití
editTemplate:Upravit část Vzhledem ke své mimořádné nestálosti a reaktivitě má kovové cesium jen minimální praktické využití.
- Jeho nízký ionizační potenciál dává možnost jeho uplatnění ve fotočláncích, sloužících pro přímou přeměnu světelné energie v elektrickou. Zároveň je proto perspektivním médiem pro iontové motory, jako pohonné jednotky vesmírných plavidel, dále ke konstrukci elektronek a fotonek (jako jediný kov vyzařuje elektrony při osvětlení světlem všech barev)
- Při výrobě katodových trubic, pracujících s nízkotlakou náplní inertního plynu, se užívá cesia jako getru, tj. látky sloužící k zachycení a odstranění posledních zbytků přimíšených reaktivních plynů.
- většina Cs jde ale na přípravu velmi hustých výplachů pro hlubinné vrtání - používá vodný roztok mravenčanu cesného (HCOOCs), který má hustotu až 2,3 g·cm−3
- do přístrojů pro noční vidění, ve fotonásobičích elektronů a v televizních přijímačích
- izotop 137Cs s poločasem přeměny 30,08 let[1] se používá v nedestruktivním zkoušení materiálů a výrobků (defektoskopii) a při ozařování rakovinných nádorů
- Od roku 1967 je v soustavě SI definována základní jednotka času, 1 sekunda, na základě frekvence emitovaného světelného záření izotopu 133Cs. Je definována jako doba trvání 9 192 631 770 period záření, které odpovídá přechodu mezi dvěma hladinami velmi jemné struktury základního stavu tohoto izotopu. Tato definice předpokládá atomy v klidu a při teplotě absolutní nuly.[2]
Sloučeniny
editAnorganické sloučeniny
editvpravo|náhled|250px|Uhličitan cesný vpravo|náhled|250px|Fluorid cesný
- Hydrid cesný CsH je bílá krystalická látka, které lze využít jako velmi silné redukční činidlo. Na vzduchu je nestálý, reaguje s kyslíkem i se vzdušnou vlhkostí. Připravuje se reakcí mírně zahřátého kovového cesia ve vodíkové atmosféře.
- Superoxid cesný CsO2 je žlutý prášek, na vlhkém vzduchu nestabilní. Lze ho využít jako silného redukčního činidla, které jemnou oxidací odštěpí jeden kyslík a přejde v peroxid cesný a silnější oxidací odštěpí dva kyslíky a přejde v oxid cesný. U cesia jsou známé i oxidy (tzv. suboxidy) se složením Cs7O, Cs4O, Cs7O2, Cs3O, Cs2O a Cs2O3. Superoxid cesný vzniká hořením cesia na vzduchu nebo i za pokojové teploty při jeho samovolné oxidaci vzdušným kyslíkem.
- Cs + O2 → CsO2
- Hydroxid cesný CsOH je bílá krystalická látka, která je na rozdíl od analogických sloučenin sodíku a draslíku málo hygroskopická a je jen velmi omezeně rozpustná ve vodě. Je to velmi silná zásada, která má velmi silné žíravé účinky. Připravuje se reakcí cesia, oxidu cesného, peroxidu cesného nebo superoxidu cesného s vodou nebo elektrolýzou roztoku chloridu cesného či podvojnou záměnou mezi cesnou solí a hydroxidem kovu alkalických zemin.
Soli
editCesné soli jsou ve vodě obecně velmi dobře rozpustné a jen několik je nerozpustných, všechny mají bílou barvu, pokud není anion soli barevný (manganistany, chromany). Cesné soli vytváří snadno podvojné soli, ale velmi nesnadno komplexy. Ještě před 50 lety[kdy?] nebyly známy žádné komplexy alkalických kovů a uvažovalo se o nich, že nejsou vůbec schopny tvořit komplexy (podobně jako se uvažovalo, že vzácné plyny nejsou schopny tvořit sloučeniny).
- Chlorid cesný CsCl je bílá krystalická látka. Chlorid cesný i ostatní cesné halogenidy mají silný sklon k tvorbě polyhalogenidů. Vyrábí se reakcí kyseliny chlorovodíkové s uhličitanem cesným nebo hydroxidem cesným. Ostatní cesné halogenidy nemají praktické využití.
- Dusičnan cesný CsNO3 je bílá krystalická látka, která se svými vlastnostmi velmi podobá dusičnanu draselnému. Vyrábí se reakcí kyseliny dusičné s hydroxidem cesným nebo uhličitanem cesným.
- Uhličitan cesný Cs2CO3 je bílá krystalická, silně hygroskopická látka. Snadno se rozpouští ve vodě a v ethanolu. Nejlépe se připravuje reakcí síranu cesného s hydroxidem barnatým a následným odpařením s uhličitanem amonným. Dá se také připravit reakcí hydroxidu cesného se vzdušným oxidem uhličitým.
- Síran cesný Cs2SO4 je bílá krystalická látka, která se svými vlastnostmi podobá síranu draselnému. Velmi snadno tvoří podvojné sloučeniny, popřípadě smíšené soli. Připravuje se reakcí uhličitanu cesného nebo hydroxidu cesného s kyselinou sírovou.
- Fosforečnan cesný Cs3PO4
Organické sloučeniny
editMezi organické sloučeniny cesia patří zejména cesné soli organických kyselin a cesné alkoholáty. K dalším cesným sloučeninám patří organické komplexy cesných sloučenin tzv. crowny a kryptáty. Zcela zvláštní skupinu organických cesných sloučenin tvoří organokovové sloučeniny.
Reference
editLiteratura
edit- Jursík F.: Anorganická chemie kovů. 1. vyd. 2002. ISBN 80-7080-504-8 (elektronická verze)
- Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
- N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9
Externí odkazy
edit- 15px|link=|alt= Wikimedia Commons alberga una categoría multimedia sobre Cesium.
- Template:Wikislovník
Template:Periodická tabulka (navbox) Template:Autoritní data
Kategorie:Chemické prvky Kategorie:Kovy Kategorie:Redukční činidla